

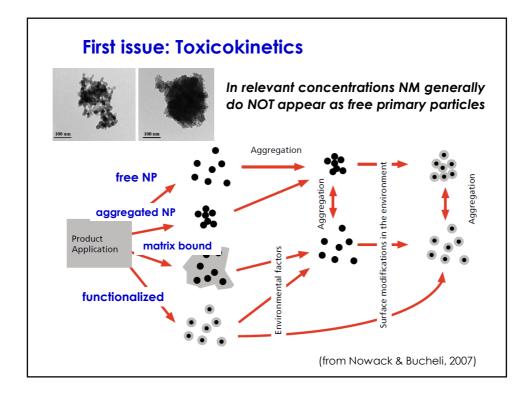
Human toxicity of NM: what disease endpoint?

> Unintentionally produced NP

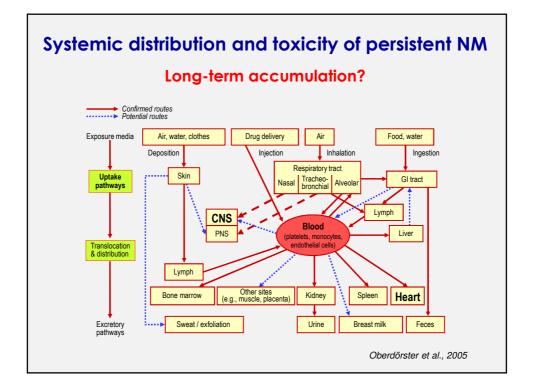
- Findings from air pollution epidemiological studies

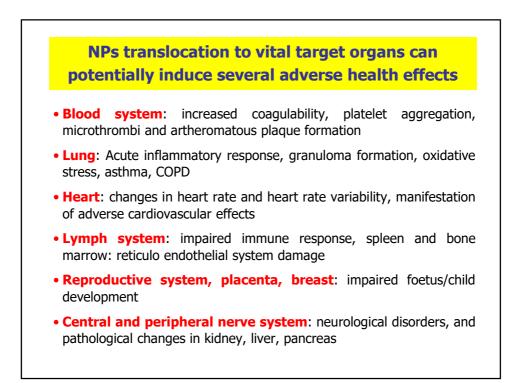
UFP have been associated with respiratory irritation, endothelial dysfunction (impaired vasodilation) with mild systemic inflammation, hearth arrythmias and accelerated atherosclerosis, lung cancer...

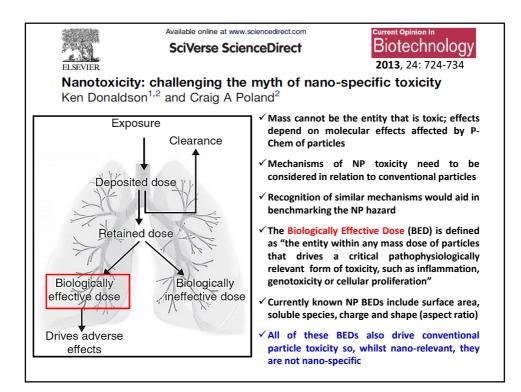
- Findings from occupational studies (welding fumes and diesel

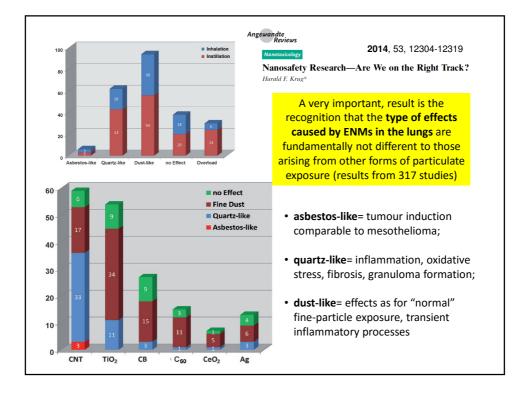

exhausts)

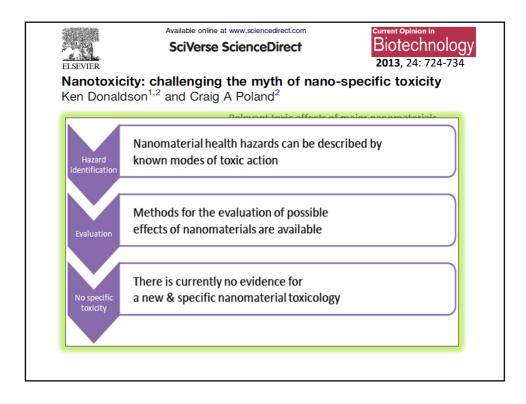
WF exposure has been associated with lung cancer, metal fume fever, susceptibility to pulmonary infection, obstructive lung disease, and possible neurologic changes...

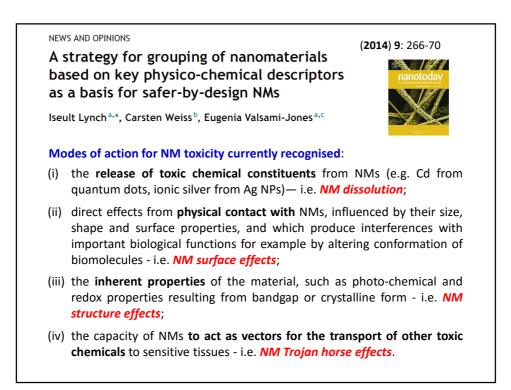

Intentionally produced NP

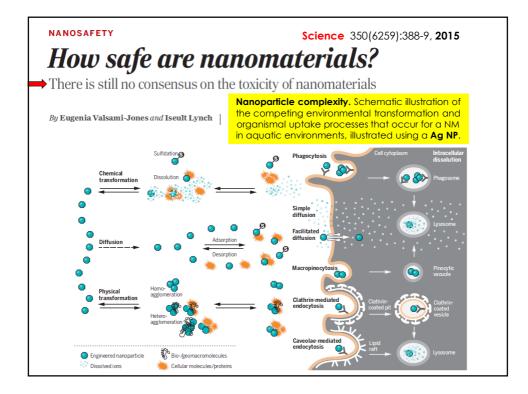

 Findings from epidemiological studies of manufactured NP already on the market (nano-CB, CNTs,TiO₂, SiO₂, Al₂O₃, nano-Ag,...) are lacking or very preliminary....

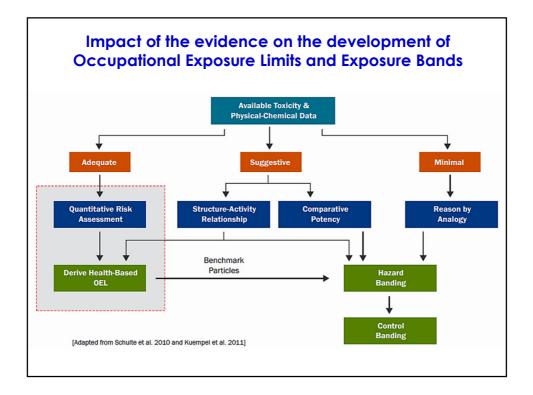

ESEARCH			Open Access	Size	Mean	Maximum	Minimum	SD P	ercentage (%
ducod .	aulmonany from	ction and increas		<0.523 µm	233.77	270.6	208.2	24.32 5).77
		ction and increas		0.523-1 µm	211.33	220.86	206.52	5.49 4	5.90
pro-inflammatory cytokines in nanoscale carbon plack-exposed workers				1-2.5 µm	13.24	13.71	12.27	0.58 2	88
аск-ехро	osed workers		25-20 µm	2.08	2.24	1.95	0.13 0	45	
Table 4 The pulmonary function indexes in control and CB-exposed groups (mean ± SD)			- 1	T-1-1- C T	Control group		Is of control and CB wo		orkers P value
B-expose	d groups (mean ±	SD)	[Cytokines	Control o	Iroup	CB-exposed	group	
			P-value	Cytokines		jroup pg/mL,		group nL,	P value
B-expose ariables	d groups (mean ± Control group	SD) CB-exposed group	[Cytokines	Control <u>c</u> (n = 104)	jroup pg/mL, 5%-95%)	CB-exposed (n = 81) pg/r	group nL, -95%)	P value
B-expose ariables EV1 (%)	d groups (mean ± Control group (n = 104)	SD) CB-exposed group (n = 81)	P-value	Cytokines IL-1β IL-6	Control c (n = 104) median (4.16 (0.00 27.51 (2.1	pg/mL, 5%-95%) -17.75)	CB-exposed (n = 81) pg/r median (5%) 11.88 (1.98-38) 188.32 (46.13)	group nL, -95%) 3.08) -643.16)	P value <0.001 ^a <0.001 ^a
B-expose	d groups (mean ± Control group (n = 104) 103.61 ± 14.52	SD) CB-exposed group (n = 81) 98.07 ± 13.53	<i>P</i> -value	Cytokines IL-1β IL-6 IL-8	Control <u>c</u> (n = 104) median (4.16 (0.00	roup pg/mL, 5%-95%) -17.75) 5-180.18)	CB-exposed (n = 81) pg/r median (5% 11.88 (1.98-38	group nL, -95%) 3.08) -643.16)	P value <0.001 ^a <0.001 ^a
B-exposed ariables EV1 (%) VC (%) EV1/FVC	d groups (mean ± Control group (n = 104) 103.61 ± 14.52 104.67 ± 14.64	CB-exposed group (n = 81) 98.07 ± 13.53 100.12 ± 13.47	P-value 0.019 ^a 0.071 ^a 0.001 ^a <0.001 ^a	Cytokines IL-1β IL-6 IL-8	Control c (n = 104) median (4.16 (0.00 27.51 (2.1 746.30 (163.55-18 804.09	roup pg/mL, 5%-95%) -17.75) 5-180.18) 379.01)	CB-exposed (n = 81) pg/r median (5%) 11.88 (1.98-38 188.32 (46.13) 1117.10 (369)	group nL, -95%) 3.08) -643.16)	P value <0.001 ^a <0.001 ^a
B-exposed ariables EV1 (%) VC (%) EV1/FVC EF (%)	d groups (mean ± Control group (n = 104) 103.61 ± 14.52 104.67 ± 14.64 0.87 ± 0.05	CB-exposed group (n = 81) 98.07 ± 13.53 100.12 ± 13.47 0.84 ± 0.05	P-value 0.019 ^a 0.071 ^a 0.001 ^a	Cytokines IL-1β IL-6 IL-8 ΜΙΡ-1β	Control c (n = 104) median (4.16 (0.00 27.51 (2.1) 746.30 (163.55-18 804.09 (225.35-28	rroup pg/mL, 5%-95%) -17.75) 5-180.18) 379.01) 888.59)	CB-exposed (n = 81) pg/r median (5%) 11.88 (1.98-34) 188.32 (46.13) 1117.10 (369) 2694.52 (1136)	group nL, -95%) 3.08) -643.16) 36-3737.82) 5.97-10074.81)	P value <0.001 ² <0.001 ² <0.001 ²
B-expose Tariables EV1 (%) VC (%)	d groups (mean ± Control group (n = 104) 103.61 ± 14.52 104.67 ± 14.64 0.87 ± 0.05 93.76 ± 17.86	SD CB-exposed group (n = 81) 98.07 ± 13.53 100.12 ± 13.47 0.84 ± 0.05 78.50 ± 16.80	P-value 0.019 ^a 0.071 ^a 0.001 ^a <0.001 ^a	Cytokines IL-1β IL-6 IL-8	Control c (n = 104) median (4.16 (0.00 27.51 (2.1- 746.30 (163.55-18 804.09 (225.35-28 47.75 (0.0	rroup pg/mL, 5%-95%) -17.75) 5-180.18) 379.01) 888.59)	CB-exposed (n = 81) pg/r median (5%) 11.88 (1.98-38 188.32 (46.13) 1117.10 (369)	group nL, -95%) 3.08) -643.16) 36-3737.82) 5.97-10074.81) -572.05)	P value <0.001 ^a <0.001 ^a




Ame: Occup: Hyg. 2015, 1–19 doi:10.1093/ambig/inverce20	9		doi:10.105	n Hyg, 2015, Vol. 93/annhyg/mev0 access publication	59, No. 6, 681–704 23 6 April 2015			The One Worker H	tered Society wolfn Protect	<u> </u>		
Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits Matthew M. Dahm ¹⁺ , Mary K. Schubauer-Berigan ¹ , Douglas E. Evans ² , M. Eileen Birch ² , Joseph E. Fernback ² and James A. Deddens ⁴	Occupational Exposure to Nano-Objects and Their Agglomerates and Aggregates Across Various Life Cycle Stages; A Broad-Scale Exposure Study Cindy Bekker ^{1,7} , Eelos Kuijper ² , Derk H. Brouwer ² , Roel Vermeulen ² and Wouter Fransman ²											
TEM images of single fibers and CNT agglomerates from personal breathing	an	alysis, direct-read oposed decision l	ling devices, o	contextual info	ions including detaile armation, and overall							
zone samples.	*	Exposure	Industrial sector	Measurement	Qualitative results	1	Quan	titative r	esults			Conclusion
		scenario, NOAA type, and	sector	type	Presence of	Model estimates					Likelihood	
		primary particle size			NOAA on filter (SEM/EDX)					distril (n	m)	of significant exposure to
						GM (# cm ⁻³)	90% CI (# cm ⁻³)	P value	R ³	GM	GSD	NOAA
	So	urce domain 1: pro	duction of na	nomaterials								
	1.	Laser ablation	Academic	BG	NOAA not present	6929	6816-7044	<0.01	0.74	n.a.	n.a.	Unlikely
D.)		Ag ₂ O: <100 nm	and research	PBZ		6404	6162-6655					
A STATE		urce domain 2: ha										
	2	Big bag replacement:	Toner/ink production	BG	Clusters: 50 nm-20 µm, no	15 578	12 103-20 051	<0.01	0.91	44	1.65	Presumable
and the second second		Carbon black: 30-50 nm		PBZ/NF	free CB particles	91711	64489-130424			52	2.16	
	3	Big bag		BG	Clusters:	11 099	7061-17445	<0.01	0.62	47	2.15	Presumable
the state		replacement: Carbon black: 50 nm		PBZ/NF	50 nm–5 µm, no free CB particles	48 77 1	28 706-82 861			53	2.15	
⁵ Average number	4	Big bag replacement:		BG	NOAA not present	8343	7944-8762	<0.01	0.82	60	2.16	Likely
1 of CNT		SiO ₂ : 20-40 nm		PBZ/NF	Clusters: 1–5 µm, no free SiO ₂ particles	12769	11816-13800			84	1.61	
fibero por gizo	5	Big bag replacement:	Material development.	BG	Clusters: 50 nm-10 µm, no	17452	17 375-17 529	<0.01	0.78	20	2.1	Possible/not excluded
fibers per size		ZnO: 10 nm	production	PBZ/NF	free ZnO particles	14814	14637-14992			23	2.4	encoded
	6	Big bag replacement:*	Toner/ink production	BG ^b	NOAA not present	10312	9081-8762	<0.01	0.75	n.a.	n.a.	Likely
		Carbon black: 30-60 nm	Production	PBZ/NF	Clusters: 50 nm–50 µm, no free CB particles	18732	16188-21677			41	2.71	
o Single CNT <1µm 1-2µm 2-5µm 5-10µm ≻10µm Size Bin	7	Dumping powder manually:		BG	Clusters: 100 nm-100 µm, no free SiO,	15 508	13603-17679	<0.01	0.8	52	1.93	Presumable
		SiO ₃ : 20–50 nm		PBZ/NF	particles	67488	54 573-83 459			58	1.79	







The principal challenges in RA

Nanosafety in Europe 2015-2025: Towards Safe and Sustainable Nanomaterials and Nanotechnology Innovations

(a) Savolainen (coordinator), Ulrika Backman, Derk Brouwer, Bengt Fadeel, Teresa Fernandes, Fhomas Kuhlbusch, Robert Landsiedel, seult Lynch, and Lea Pylkkänen ogether with the members of the NanoSafety Cluster who have contributed to the document and listed in

- introduction or establishment of a systematic and standardized metrology for physically characterizing NM (*multiple metrics needed*);
- (2) uncertainty in the nature of the doseresponse relationship between exposure of NM and biological effects, whether they are - or not - "nano-specific" (hazard characterization);
- (3) the difficulties associated with measuring exposure to NM and surveillance once they are introduced into the environment (Life-cycle assessment).

There are inadequate data to inform quantitative risk assessments on current and emerging NM. At most, only qualitative risk assessments are feasible, given the current state of knowledge

Milestone	Торіс	By 2015	Ву 2020	By 2025
	Health effect	Markers for short term effect identified	Markers for long term effect identified	Implemen- tation of the markers
Epidemiology & health surveillance	Register	Health survei- llance registries developed Exposure registries deve- loped	Using registries for research	Implementa- tion of results for regulations
	Study design	Pilot panel stu- dies completed	Case-control studies comple- ted	Longitudinal studies started

Sc	and J Work Environ	Health 2008;34(6):471–478			
by Ca	Paul Schulte, PhD,1	ocus on occupational safety and he Charles Geraci, PhD, ¹ Ralph Zumwalde, MS, ¹ M in Kuempel, PhD, ¹ Vladimir Murashov, PhD, ¹ Ha	ark Hoover, P	PhD,1 Vincent Human & Expe	rimental Tsolodagy (2009) 28: 413-443 norm
JOEM • Volume 5	50, Number 5, May 2008	6171	sust	upational safety and h ainable, responsible na s and needs	
of Worl	kers Potentia	tional Health Surveillance lly Exposed to Engineered of the Science		BM Rondinone and F Boccuni at of Occupational Medicine, ISPESL – National Institute	for Occupational Safety and Prevention,
Paul A. Schult Douglas Trout Raiph D. Zum Eileen Kuemp Charles L. Ger Vincent Castr. Diane J. Mund Kenneth A. M William E. Halj	, MD walde, MS el, PhD raci, PhD anova, PhD tt, PhD undt, PhD	JOEM - Volume 51, Number 3, March 2009 OME Available for this Article at ACOEM org Issues in the Develop Studies of Workers E Engineered Nanopart	xpose	d to	
focus		Paul A. Schulte, PhD Charles L. Gr Mary K. Schubauer-Berigan, PhD Ralph Zumw Candis Mayweither, BS John L. McK doi:10.109/pri/2009002500000 Additional 2009002500000 Publicket 20090000000000000000000000000000000000	alde, MS	Decupational Risk Manage Nanoparticles	ement of Engineered
	1	Review		Paul Schulte, Charles Geraci, Ralph Z and Eileen Kuempel	umwalde, Mark Hoover,
	and renthony Seaton ^{1,2,*} ,	uman health hazard egulation Lang Tran ¹ , Robert Aitken ¹ eth Donaldson ^{1,3}		Allocal Intern Notinger	Centers for Disease Control and Prevention,

Critical issues in designing epidemiological studies of ENM workers

- 1. Heterogeneity of nanoparticles;
- 2. Define the **disease endpoint**;
- 3. **Temporal factors** (likelihood to observe the outcome; shot-term vs. long-term effects)
- 4. **Exposure** duration and intensity (effectiveness)
- 5. Identify the **target population**/study population

1. Heterogeneity of nanoparticles

The variability of particle types and/or in toxic potential can make it difficult to identify adequately large cohorts with exposure to the same materials

Failure to account for particle heterogeneity can lead to misclassification on exposure and bias measures of association toward the null hypothesis.

- Provide a choice of ENM which are eligible for the study
- Classification by NM classes: Carbon-based, Metal(Ox) NP, HARNs
- Size (sub-classes) may not be the right descriptor
- Biological activity ? (e.g. ROS generation in vitro)

Critical issues in designing epidemiological studies of ENM workers

2. Define the disease endpoint

- In association studies, **the starting hypothesis** should consider **the likelihood of the disease** and know **what diseases** (disturbances, biochemical changes...) are included in the hypotheses.
- From studies on incidental particles, air pollution and experimental animal studies, malignant and non-malignant respiratory disease and cardiovascular disease are thought to be primary health effects of concern for exposed workers, although it is clear that not all incidental nanoparticles give the same biological responses.
- However, consistencies between the agent/chemical involved, the effects observed and some putative biological mechanism have been shown.

Critical issues in designing epidemiological studies of ENM workers

2. Define the **disease endpoint**

Exposure to incidental nanoparticles (e.g., generated from combustion or hot processes) has been associated with various adverse health effects in workers:

- diesel exhaust has been associated with eye and respiratory irritation, endothelial dysfunction (impaired vasodilation) with mild systemic inflammation, and lung cancer;
- welding fume exposure has been associated with lung cancer, metal fume fever, susceptibility to pulmonary infection, obstructive lung disease, and possible neurologic changes

Environmental/incidental/engineered NP and C-BNM share some characteristics, such as the capacity to cause Ox-stress and inflammation in the lung, affect the cardiovascular system, to enhance atherotrombosis and modulate heart-rate variability.

Critical issues in designing epidemiological studies of ENM workers

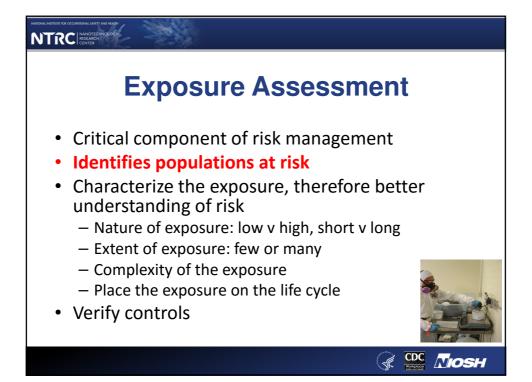
3. **Temporal factors** (likelihood to observe the outcome; latency time)

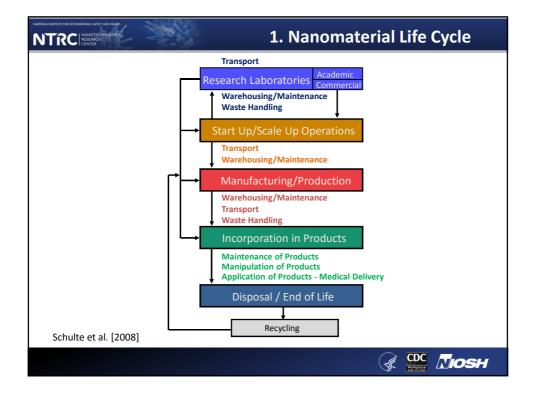
Currently, it is unlikely that a population of workers with long-term exposure to nanomaterials large enough for epidemiological study exists at this time

the number of people actually exposed for some period that could significantly put them at risk of **chronic effects** may not be large enough to form an adequate recruitment pool or sampling frame for conducting epidemiologic studies for many years

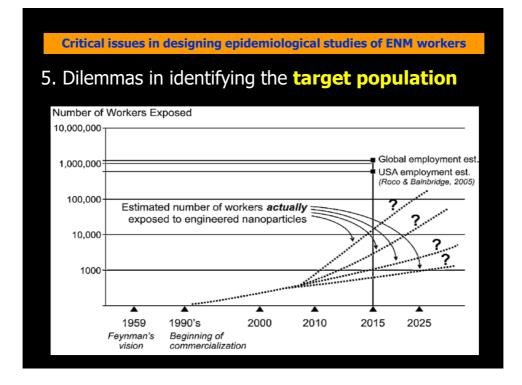
Nonetheless, it is worth noting that some of the cardiovascular effects associated with UFP exposure (e.g., increased daily cardiovascular disease mortality within 1 or 2 days of high particulate air pollution exposure) suggest that cardiovascular effects of NP might not require long periods of follow-up. This might particularly be true in middle-aged or older workers with pre-

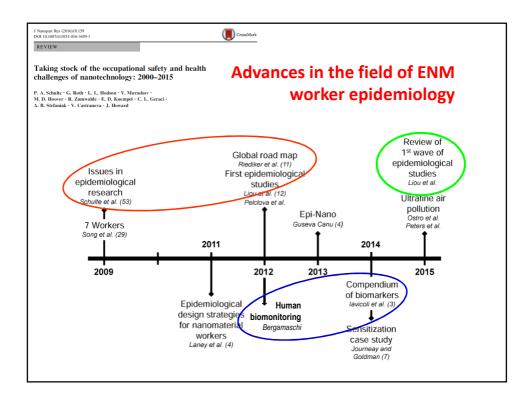
existing cardiovascular disease or risk factors.

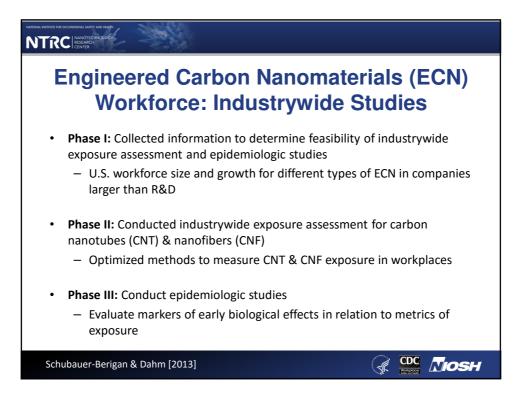

Critical issues in designing epidemiological studies of ENM workers

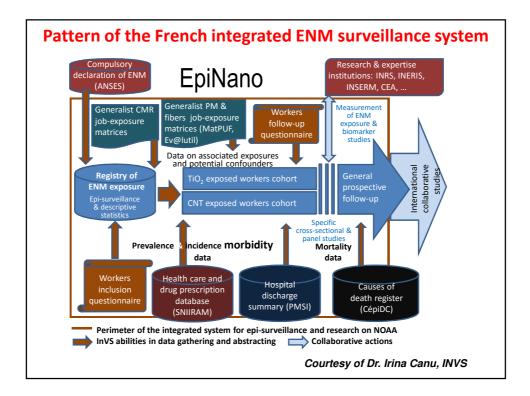

4. Exposure duration and intensity

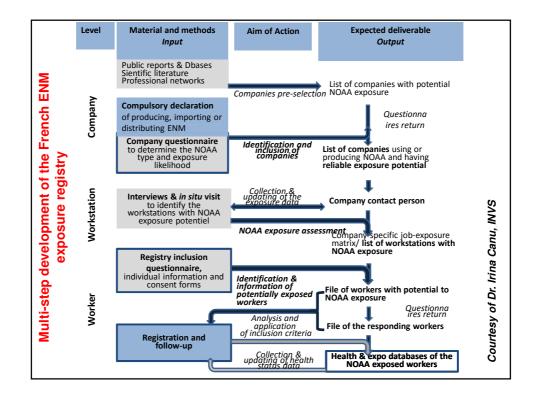
If workers are minimally exposed, due to enclosed processes or handling of materials in which NP are embedded, such studies may be uninformative.

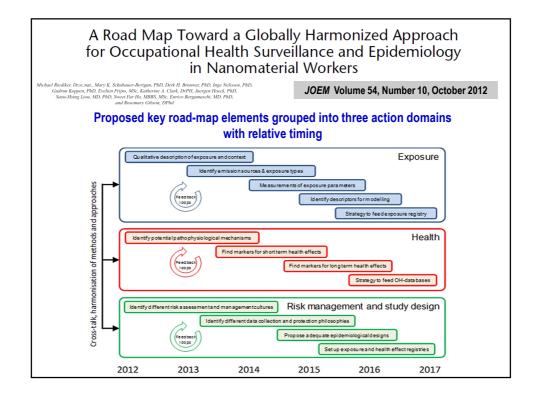

If there is sufficient exposure to cause acute and chronic health effects, epidemiological studies may be able to be conducted.

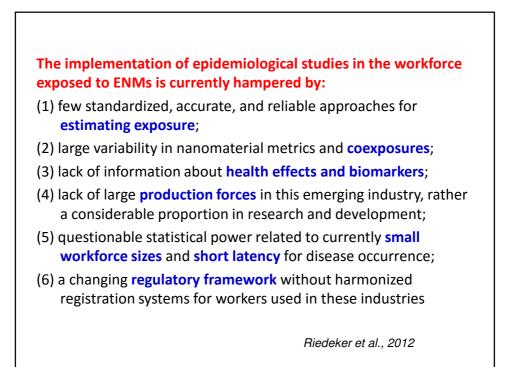

- A key requirement for all studies is **good quality exposure data** for workers (in reality, this may not always be possible).
- Critical in the assessment of exposure-response relationships is the distribution of exposures and exposure variability. Epidemiologic studies require sufficient variability in exposures and sufficient distribution of exposures to provide contrasts necessary to estimate such relationships reliably

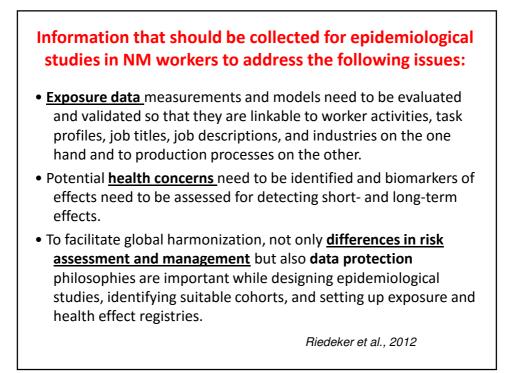


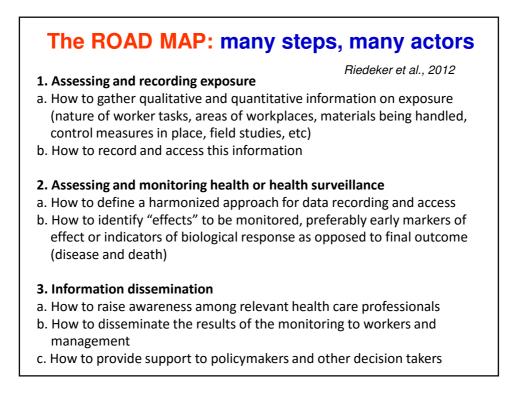

Type of Facility	Type of Particle, Morphology	Size of Particle	Range of "Potential" Exposure Concentrations
University Research lab	Carbon Nanofibers	Approx. 100 nm diameter, 1-10 microns long	60-90 μg/m³
Metal Oxide Manufacturer	TiO ₂ , Lithium Titanate, powder	100-200 nm	<100 nm: 1.4 μg/m³ (TiO ₂) Total dust: 4-149 μg/m³ (TiO ₂) <100 nm: ND (Li) Total dust: ND -3 μg/m³ (Li)
Manufacturer	Carbon Nanofibers	Approx. 100 nm diameter, 1-10 microns long	15 - 1800 μg/m³
Research and Development lab	Quantum Dots, spheres	2 -8 nm	ND
Metal Oxide Manufacturer	Manganese, Silver, Nickel, Cobalt, Iron oxides, spheres	8 -50 nm	67 - 3619 μg/m ³
Research and Development lab (Pilot-Scale)	Aluminum, spheres	50 – 100 nm	40 - 276 µg/m³
Research and Development lab	Elemental Metals - Silver, Copper, TiO ₂	15 – 40 nm	ND
Filter Media Manufacturer	Nylon 6 Nanofiber	70 - 300 nm diameter, continuous length	ND











B] Occupational Health Effect Assessment

Identify Potential Health Concerns and Mechanisms

There is already a wealth of information in the epidemiological literature about exposure to "traditional" or "classic" particles and other (non engineered) materials that fall within the European Commission's definition of nanomaterials.

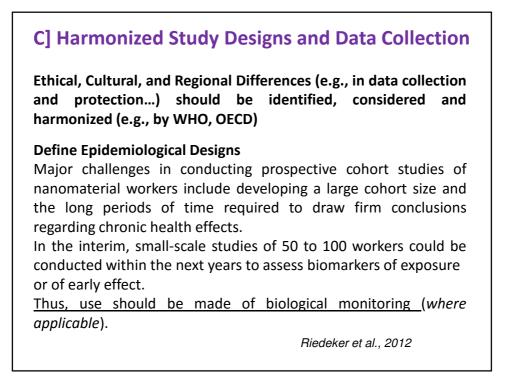
• Strategy to Identify Short- and Long-Term Health Effect Markers

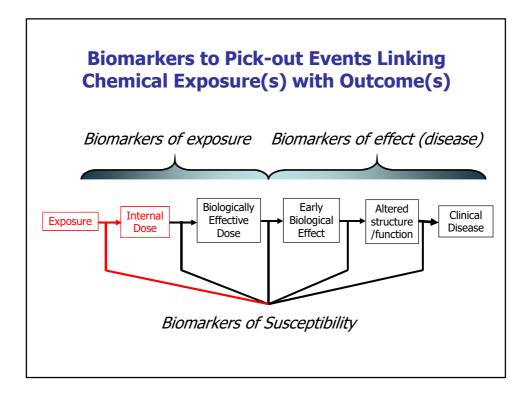
<u>Pulmonary and cardiovascular diseases</u> (leading to increased morbidity and mortality among vulnerable groups) have been linked to pollution and levels of ultra-fine particles, but their use as health endpoints for workers exposed to MNM have limitations: they are nonspecific (and certainly not nano-specific), have a high prevalence in the general population, and share multiple non occupational risk factors.

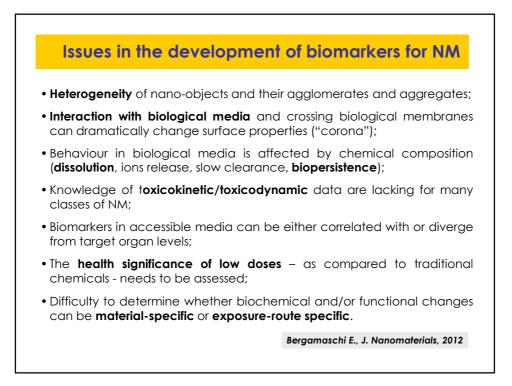
Riedeker et al., 2012

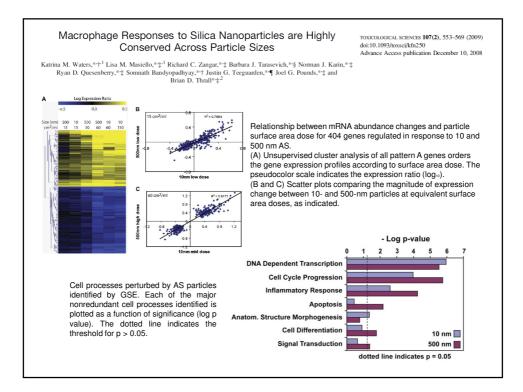
B] Occupational Health Effect Assessment

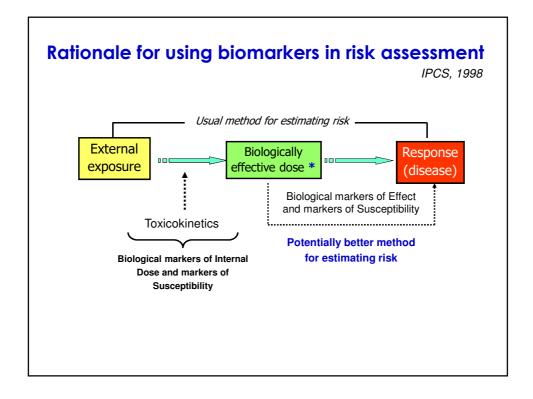
• Strategy to Identify Short- and Long-Term Health Effect Markers

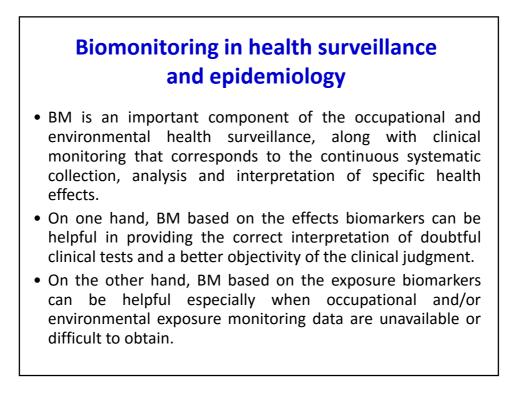

A variety of other potential short- or long-term effect parameters have been proposed for a targeted assessment of personnel exposed to NMs. These include heart rate variability, blood-clotting parameters, proinflammatory cytokines, upregulation of adhesion momolecules or antioxidant capacity, and biomarkers of pulmonary fibrosis.

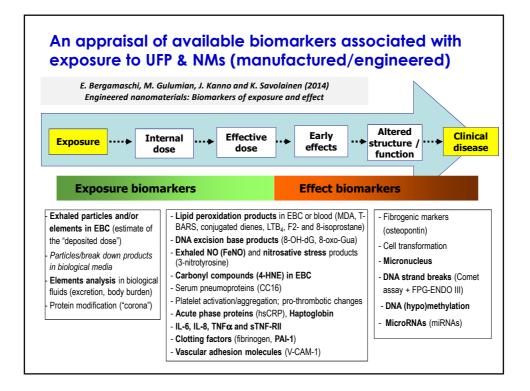

Although promising in epidemiological research as putative biomarkers of effect, these parameters are still not assessable for their predictive value of health risk at an individual level; they are not routinely applicable and need to be further validated.

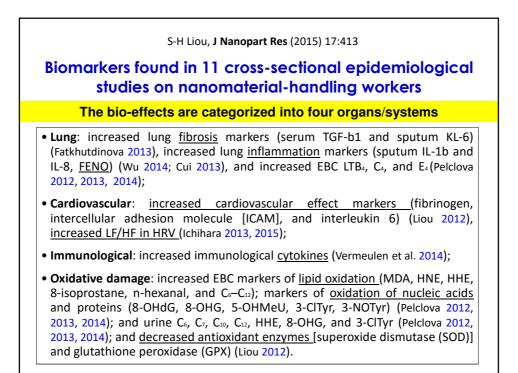

Riedeker et al., 2012




- ✓ Biomarkers of exposure (eg, presence of chemicals in the blood or the urine; this can readily be done for chemicals such as metals).
- Chemical changes in exhaled air or exhaled breath condensate suggested to reflect not only abnormalities of the airway lining fluid and lung inflammation, but also potential exposure.
- ✓ Local effects: inflammatory changes, short-term respiratory changes, respiratory, eye, or skin irritation, depending on the route of exposure/site of uptake (with special tests to study biopersistent long fibers such as some forms of carbon nanotubes).
- ✓ Systemic effects to confirm cardiovascular changes and inflammatory mechanisms: heart-rate variability, platelet aggregation, and other prothrombotic effects, as well as cytokines and differential blood cell counts.
- ✓ Medical tests for early detection of health effects at a preclinical stage



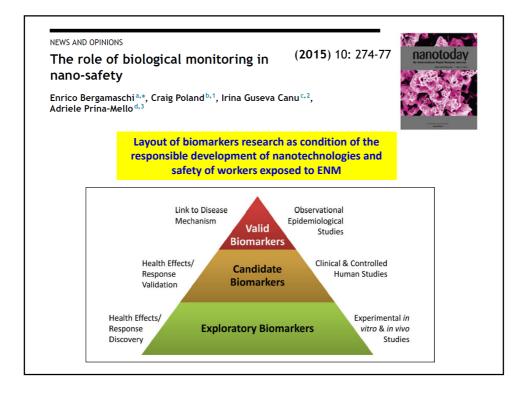


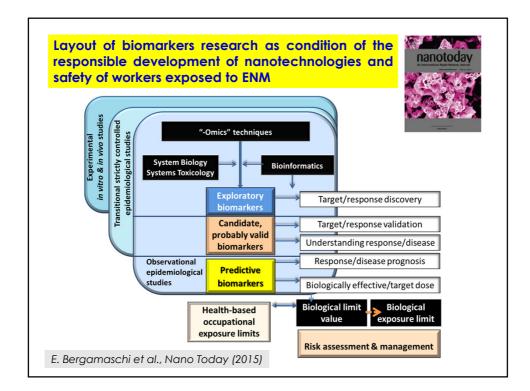


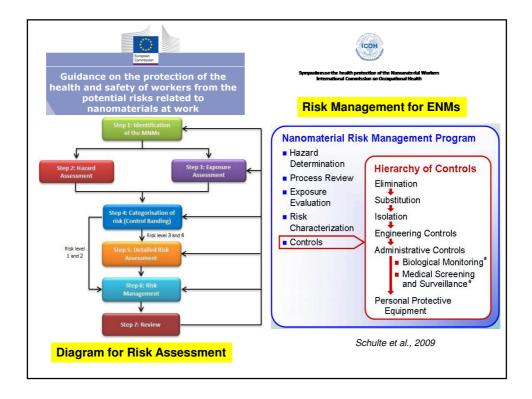
Characteristics and findings of six <u>published</u> epidemiological studies on nanomaterial-handling workers

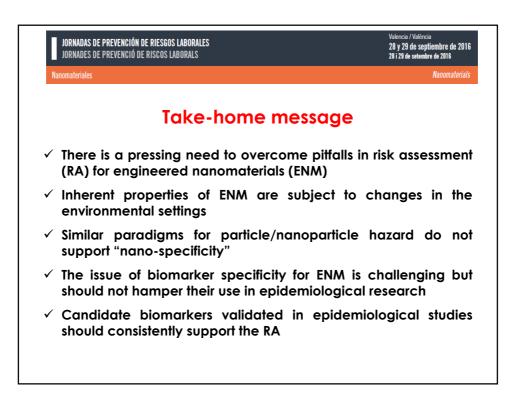
	S-H Liou	, J Nanopar	rt Res (2015) 17:413 DOI 10.1007/s11051-015-3219-7	
Descriptive				
Lee et al. (2012)	Korea	Nanosilver	Blood and urine levels of silver were low in 2 workers. No abnormality was found in hematological data and blood chemistry values	2
Cross-sectiona	ป			
Liou et al. (2012)	Taiwan	Various ^a	Decreased antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) and increased cardiovascular markers, fibrinogen, intercellular adhesion molecule (ICAM), and interleukin 6 were noted in exposed workers	227/137
Liao et al. (2014a)	Taiwan	Various ^a	The only symptom identified as significantly work-related was sneezing. The only disease significantly worsened by work was allergic dermatitis	258/200
Wu et al. (2014)	Taiwan	Various ^a	A significant association between risk level 2 of NP exposure and FENO. When the multivariate logistic regression model was adjusted for confounders, nano-TiO ₂ in all of the nanomaterial-exposed categories had a significantly increased risk in FENO > 35 ppb	241/196
Lee et al. (2015)	Korea	MWCNTs	The malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE), and n-hexanal levels in the EBC of MWCNT manufacturing workers were significantly higher than those in the office workers	9/4
Longitudinal				
Liao et al. (2014b)	Taiwan	Various ^a	Changes in the antioxidant enzymes (decreased SOD and GPX), cardiovascular markers (increased VCAM, decrease of paraoxonase), the small airway damage marker (decreased Clara cell protein 16), and lung function parameters (decreased MMF, PEFR, and FEP25 %) were significantly associated with nanomaterial-handling	124/77
^a Carbon nand	otubes, silic	a dioxide, titan	ium dioxide, nanosilver, and nanoresin	

		ace S. J. Tsai • K. Schubauer-Berigar	Assessing the first wave of epidemiological studie nanomaterial workers	es of			
Analysis of four longitudinal studies							
0	•	•	2013; Liou et al. 2013) yielded negative finding particle exposure and biomarker change)	s (no			
Study type, authors, year (presentation)	Country	Nanomaterials	Major findings	Sample size (exposed/no. controls)			
Longitudinal							
Liou et al. (2013) (2013 EPICOH)	Taiwan	Various (carbon nanotubes, silica dioxide, titanium dioxide, nanosilver, nanoresin)	No significant difference was revealed between exposed workers and controls in the changes of all markers, including lung injury markers, cardiovascular disease markers, heart rate variability (HRV), inflammation markers, oxidative stress and lipid peroxidation markers, comet assay, pulmonary function test, and neurobehavioral test, in this 4-year follow-up study	206/140 followed up less than 2 times			
		Calcium carbonate	No significant cross-shift effect for FEV1, BP, and FENO	66-102/0			
Cui (2013) (PhD thesis)	China	Calcium carbonate					


J Nanopart Res (2015) 17:413 DOI 10.1007/s11051-015-3219-7


REVIEW Saou-Hsing Liou · Candace S. J. Tsai · Daniela Pelclova · Mary K. Schubauer-Berigar Paul A. Schulte Assessing the first wave of epidemiological studies of nanomaterial workers


Strengths and weaknesses of current epidemiological studies of nanomaterial workers


Weaknesses

- · Most of the studies were cross-sectional; inherently they could not demonstrate causality
- The few longitudinal studies lacked rigorous exposure assessment (e.g. different sampling strategies to measure elemental carbon...)
- Most of the studies lacked time-weighted averaged personal breathing zone exposure data
- Qualitative risk assessment approaches (Control Banding tools)
- The small size of the study populations hinders subgroup assessments and restricts the generalizability of the results
- Most of studies measured nanoparticle mass concentrations instead of nanoparticle counts or surface area or other P-Chem parameters relevant for health effects
- Most studies used area sampling instead of personal sampling (which represents actual exposure of nanomaterial workers) to measure nanoparticle concentrations
- Selection bias in identification of the study population; company workers who are more concerned about their health condition may be prone to participate in health examinations and report more negative health effects, which could lead to a biased evaluation

